USC breaks ground on Norris Healthcare Consultation Center

By Amy E. Hamaker

It has been five years since a筹建。。tis was a team that developed a retinal prosthesis that generates our mind, structure and circuitry that generates our mind, behavior and consciousness. “The definition of neuroimaging—the critical work that allows us to actually see the physical structure and circuitry that generates our mind, behavior and consciousness. Headlining the move are Arthur W. Toga, professor of neurology and co-director of the Division of Brain Mapping in the Neuropsychiatric Institute at UCLA, and Paul Thompson, professor of neurology and psychiatry at UCLA. Toga is director of the Laboratory of Neuro Imaging (LONI), which will come to USC in the fall, bringing with it a full faculty contingent and international research collaborations.

“USC prides itself on recruiting transformative faculty who excel in their own fields of interest and whose affinity for collaboration helps erase the boundaries between disciplines,” said USC President C. L. Max Nikias. “This cluster hire will help us move one step closer to understanding the structure and function of the human brain. Professors Toga and Thompson—and their talented team—will enhance the quality of this research at USC and improve the lives of people around the world.”

At USC, Toga and Thompson will hold joint appointments in the Viterbi School of Engineering, the USC School of Medicine of USC and the USC Viterbi School of Engineering. They will be joined in moving to USC by a team of faculty, researchers, programmers, data analysts and doctoral students working to detail individual functional and structural changes to the brain. “The definition of ‘catalyst’ is an ‘agent that transforms a system into something new’,” Puliafito said.

USC honors Humayun for retinal prosthesis

By Josh Grossberg

University officials recently honored Mark Humayun, a professor with joint appointments at the Keck School of Medicine of USC and the USC Viterbi School of Engineering, for his groundbreaking work in a retinal prosthesis that was recently approved by the U.S. Food and Drug Administration. Joining the April 22 celebration for Humayun were Keck School Dean Carmen A. Puliafito, Viterbi School Dean Daniel E. Vera, USC Provost and Senior Vice President for Academic Affairs Elizabeth Garrett, Humayun and Keck School Dean Armstrong. "Your scholarship is even brainier. Already a leading center for research on the neurobiological basis of emotion, the university announced today a major cluster hire of an institute with 110 faculty, researchers and multidisciplinary staff in the field of brain mapping and neuroimaging—the critical work that allows us to actually see the physical structure and circuitry that generates our mind, behavior and consciousness.

USC prides itself on recruiting transformative faculty who excel in their own fields of interest and whose affinity for collaboration helps erase the boundaries between disciplines,” said USC President C. L. Max Nikias. “This cluster hire will help us move one step closer to understanding the structure and function of the human brain. Professors Toga and Thompson—and their talented team—will enhance the quality of this research at USC and improve the lives of people around the world.”

At USC, Toga and Thompson will hold joint appointments in the Viterbi School of Medicine of USC and the USC Viterbi School of Engineering. They will be joined in moving to USC by a team of faculty, researchers, programmers, data analysts and doctoral students working to detail individual functional and structural changes to the brain. “The definition of ‘catalyst’ is an ‘agent that transforms a system into something new’,” Puliafito said.

USC honors Humayun for retinal prosthesis

By Josh Grossberg

University officials recently honored Mark Humayun, a professor with joint appointments at the Keck School of Medicine of USC and the USC Viterbi School of Engineering, for his groundbreaking work in a retinal prosthesis that was recently approved by the U.S. Food and Drug Administration. Joining the April 22 celebration for Humayun were Keck School Dean Carmen A. Puliafito, Viterbi School Dean Daniel E. Vera, USC Provost and Senior Vice President for Academic Affairs Elizabeth Garrett, Humayun and Keck School Dean Armstrong. "Your scholarship is even brainier. Already a leading center for research on the neurobiological basis of emotion, the university announced today a major cluster hire of an institute with 110 faculty, researchers and multidisciplinary staff in the field of brain mapping and neuroimaging—the critical work that allows us to actually see the physical structure and circuitry that generates our mind, behavior and consciousness.

USC prides itself on recruiting transformative faculty who excel in their own fields of interest and whose affinity for collaboration helps erase the boundaries between disciplines,” said USC President C. L. Max Nikias. “This cluster hire will help us move one step closer to understanding the structure and function of the human brain. Professors Toga and Thompson—and their talented team—will enhance the quality of this research at USC and improve the lives of people around the world.”

At USC, Toga and Thompson will hold joint appointments in the Viterbi School of Medicine of USC and the USC Viterbi School of Engineering. They will be joined in moving to USC by a team of faculty, researchers, programmers, data analysts and doctoral students working to detail individual functional and structural changes to the brain. “The definition of ‘catalyst’ is an ‘agent that transforms a system into something new’,” Puliafito said.

USC honors Humayun for retinal prosthesis

By Josh Grossberg

University officials recently honored Mark Humayun, a professor with joint appointments at the Keck School of Medicine of USC and the USC Viterbi School of Engineering, for his groundbreaking work in a retinal prosthesis that was recently approved by the U.S. Food and Drug Administration. Joining the April 22 celebration for Humayun were Keck School Dean Carmen A. Puliafito, Viterbi School Dean Daniel E. Vera, USC Provost and Senior Vice President for Academic Affairs Elizabeth Garrett, Humayun and Keck School Dean Armstrong. "Your scholarship is even brainier. Already a leading center for research on the neurobiological basis of emotion, the university announced today a major cluster hire of an institute with 110 faculty, researchers and multidisciplinary staff in the field of brain mapping and neuroimaging—the critical work that allows us to actually see the physical structure and circuitry that generates our mind, behavior and consciousness.

USC prides itself on recruiting transformative faculty who excel in their own fields of interest and whose affinity for collaboration helps erase the boundaries between disciplines,” said USC President C. L. Max Nikias. “This cluster hire will help us move one step closer to understanding the structure and function of the human brain. Professors Toga and Thompson—and their talented team—will enhance the quality of this research at USC and improve the lives of people around the world.”

At USC, Toga and Thompson will hold joint appointments in the Viterbi School of Medicine of USC and the USC Viterbi School of Engineering. They will be joined in moving to USC by a team of faculty, researchers, programmers, data analysts and doctoral students working to detail individual functional and structural changes to the brain. “The definition of ‘catalyst’ is an ‘agent that transforms a system into something new’,” Puliafito said.
By Robin Heffler
The human body has the ability to ward off viruses by activating a naturally occurring protein at the cellular level, setting off a chain reaction that disrupts the levels of cholesterol required in cell membranes to enable viruses to enter cells.

The findings, discovered by researchers in molecular microbiology and immunology at the Keck School of Medicine of USC, hold promise for the development of therapies to fight a variety of viral infections.

“Previous studies have shown that our bodies are already equipped to block viruses such as Ebola, influenza, West Nile and SARS,” said Jae U. Jung, principal investigator and distinguished professor and chair of the Molecular Microbiology and Immunology Department. The study, “The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry,” was published in the journal Cell Host & Microbe on April 17.

“We showed how this occurs,” Jung said. “When a virus tries to enter, the immune system gets stimulated by interferon, which produces almost 300 host proteins, including IFITM3. This protein then disrupts the interaction between two other proteins, which, in turn, significantly increases the level of cholesterol in cells, and thereby blocks the virus.”

Jung added that the increase in cholesterol is only within the endosome compartment of cells and has no impact on or effect from the level of cholesterol in the bloodstream. Scientists long have known that interferon, a protein released by the body’s cells and named after its ability to “interfere” with viral replication, can inhibit the spread of viruses, but didn’t understand how. The Keck School investigators found that interferon-inducible transmembrane protein 3 (IFITM3) can disrupt the interaction between Vesicle-membrane-associated protein (VAPA) and oxysterol-binding protein (OSBP) that regulates the transport and stability of cholesterol, which are required for many viruses to take hold.

One of the main goals of the work, Jung said, is to understand how the immune system recognizes viruses and blocks entry. In previous research, he and his colleagues have shown that a specific immune protein recognizes genetic information of the virus and then sets off an alarm signal in the host immune system. Jung explained that in the most recent investigation, the rise in cholesterol was found to occur in the endosome compartment within the cell membrane.

“The membrane is usually very flexible,” he said. “With an increase in cholesterol it becomes rigid, and doesn’t allow viruses to pass through the endosome compartment into cytosol, the host portion including enter.

The next step, he said, “will be to identify a therapeutic molecule that activates the expression and function of the IFITM3 protein, which potentially can be used to create an antiviral therapy. It could target the endosome compartment in order to control, combat, or prevent the spread of viral infection.”

Joining Jung in the study were Samad Amini-Bavli-Olyaei, Keck School doctoral research associate and first author of the paper, as well as Yoan Jung Chio, Keck School graduate student research associate. The research was funded by the National Institutes of Health (grants CA082057, CA106163, CA115284, D009904, AI073099, AI083025, HL110699) and the Fletcher Jones Foundation.

Continued from Page 1

By Robin Heffler
The human body has the ability to ward off viruses by activating a naturally occurring protein at the cellular level, setting off a chain reaction that disrupts the levels of cholesterol required in cell membranes to enable viruses to enter cells.

The findings, discovered by researchers in molecular microbiology and immunology at the Keck School of Medicine of USC, hold promise for the development of therapies to fight a variety of viral infections.

“Previous studies have shown that our bodies are already equipped to block viruses such as Ebola, influenza, West Nile and SARS,” said Jae U. Jung, principal investigator and distinguished professor and chair of the Molecular Microbiology and Immunology Department. The study, “The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry,” was published in the journal Cell Host & Microbe on April 17.

“We showed how this occurs,” Jung said. “When a virus tries to enter, the immune system gets stimulated by interferon, which produces almost 300 host proteins, including IFITM3. This protein then disrupts the interaction between two other proteins, which, in turn, significantly increases the level of cholesterol in cells, and thereby blocks the virus.”

Jung added that the increase in cholesterol is only within the endosome compartment of cells and has no impact on or effect from the level of cholesterol in the bloodstream. Scientists long have known that interferon, a protein released by the body’s cells and named after its ability to “interfere” with viral replication, can inhibit the spread of viruses, but didn’t understand how. The Keck School investigators found that interferon-inducible transmembrane protein 3 (IFITM3) can disrupt the interaction between Vesicle-membrane-associated protein (VAPA) and oxysterol-binding protein (OSBP) that regulates the transport and stability of cholesterol, which are required for many viruses to take hold.

One of the main goals of the work, Jung said, is to understand how the immune system recognizes viruses and blocks entry. In previous research, he and his colleagues have shown that a specific immune protein recognizes genetic information of the virus and then sets off an alarm signal in the host immune system. Jung explained that in the most recent investigation, the rise in cholesterol was found to occur in the endosome compartment within the cell membrane.

“The membrane is usually very flexible,” he said. “With an increase in cholesterol it becomes rigid, and doesn’t allow viruses to pass through the endosome compartment into cytosol, the host portion including enter.

The next step, he said, “will be to identify a therapeutic molecule that activates the expression and function of the IFITM3 protein, which potentially can be used to create an antiviral therapy. It could target the endosome compartment in order to control, combat, or prevent the spread of viral infection.”

Joining Jung in the study were Samad Amini-Bavli-Olyaei, Keck School doctoral research associate and first author of the paper, as well as Yoan Jung Chio, Keck School graduate student research associate. The research was funded by the National Institutes of Health (grants CA082057, CA106163, CA115284, D009904, AI073099, AI083025, HL110699) and the Fletcher Jones Foundation.

Continued from Page 1

By Robin Heffler
The human body has the ability to ward off viruses by activating a naturally occurring protein at the cellular level, setting off a chain reaction that disrupts the levels of cholesterol required in cell membranes to enable viruses to enter cells.

The findings, discovered by researchers in molecular microbiology and immunology at the Keck School of Medicine of USC, hold promise for the development of therapies to fight a variety of viral infections.

“Previous studies have shown that our bodies are already equipped to block viruses such as Ebola, influenza, West Nile and SARS,” said Jae U. Jung, principal investigator and distinguished professor and chair of the Molecular Microbiology and Immunology Department. The study, “The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry,” was published in the journal Cell Host & Microbe on April 17.

“We showed how this occurs,” Jung said. “When a virus tries to enter, the immune system gets stimulated by interferon, which produces almost 300 host proteins, including IFITM3. This protein then disrupts the interaction between two other proteins, which, in turn, significantly increases the level of cholesterol in cells, and thereby blocks the virus.”

Jung added that the increase in cholesterol is only within the endosome compartment of cells and has no impact on or effect from the level of cholesterol in the bloodstream. Scientists long have known that interferon, a protein released by the body’s cells and named after its ability to “interfere” with viral replication, can inhibit the spread of viruses, but didn’t understand how. The Keck School investigators found that interferon-inducible transmembrane protein 3 (IFITM3) can disrupt the interaction between Vesicle-membrane-associated protein (VAPA) and oxysterol-binding protein (OSBP) that regulates the transport and stability of cholesterol, which are required for many viruses to take hold.

One of the main goals of the work, Jung said, is to understand how the immune system recognizes viruses and blocks entry. In previous research, he and his colleagues have shown that a specific immune protein recognizes genetic information of the virus and then sets off an alarm signal in the host immune system. Jung explained that in the most recent investigation, the rise in cholesterol was found to occur in the endosome compartment within the cell membrane.

“The membrane is usually very flexible,” he said. “With an increase in cholesterol it becomes rigid, and doesn’t allow viruses to pass through the endosome compartment into cytosol, the host portion including enter.

The next step, he said, “will be to identify a therapeutic molecule that activates the expression and function of the IFITM3 protein, which potentially can be used to create an antiviral therapy. It could target the endosome compartment in order to control, combat, or prevent the spread of viral infection.”

Joining Jung in the study were Samad Amini-Bavli-Olyaei, Keck School doctoral research associate and first author of the paper, as well as Yoan Jung Chio, Keck School graduate student research associate. The research was funded by the National Institutes of Health (grants CA082057, CA106163, CA115284, D009904, AI073099, AI083025, HL110699) and the Fletcher Jones Foundation.
NEURO: Scientists will form the core of a new neuroinformatics institute at HSC

‘There’s a buzz and excitement at USC that is attractive to anybody that likes to build programs, which we do.’

—Arthur W. Toga, professor of neurology and co-director of the Division of Brain Mapping in the Neuropsychiatric Institute at UCLA

Continued from Page 1

speeds significant change,’’ said Keck School Dean Carmen A. Puliafito. ‘‘These two pre-eminent scientists fit that description perfectly.’’

Their important advances in neuroimaging will enhance the work we are doing here at the Keck School of Medicine. With Professors Toga and Thompson on our faculty, the Keck School is poised to become a leader in the fields of brain mapping and neuroimaging, untangling the secrets of disorders from diseases, including traumatic brain injury, autism and stroke. We are very excited to welcome them to our school.”

Together, these scientists will form the core of a new neuroinformatics institute founded on the USC Health Sciences campus. The researchers will build on decades of accumulated expertise and collaboration in the development of novel approaches for analysis of visual, genetic and clinical data.

‘‘Arthur Toga is a world leader in brain imaging, an area of great importance to neuroscience and neuroengineering. We are thrilled that he is joining USC and the Viterbi School, where significant strength already exists in imaging and neural engineering. With ‘reverse engineering the brain’ being one of the National Academy of Engineering Grand Challenges, Arthur and his team’s addition contributes to our vision for addressing the important issues of our times,’’ said USC Viterbi Dean Yannis C. Tortsos.

Several LONI efforts are part of an emerging field known as neuroinformatics, which has been compared in scope to the quest to map the human genome. As a prominent part of the Human Connectome Project, the LONI team is working to invent and refine techniques that will allow for atom-level four-dimensional maps of the more than 100 billion neurons and 1,000 trillion connections in the living human brain.

This, in turn, generates new leads for understanding the basis of neurodegenerative diseases—and creates opportunities to collaborate with specialists in those disease areas to create disease-specific atlases and to develop imaging approaches to track the effects of medication and anti-epileptic drugs in the brain.

‘‘There’s a buzz and excitement at USC that is attractive to anybody that likes to build programs, which we do,’’ said Toga, while also serving as associate dean at the David Geffen School of Medicine and associate vice provost of informatics at UCLA, where he has taught since 1987.

And it’s also an opportunity to refresh ourselves, to begin to look at new ways of developing existing collaborations, programs and projects.’’

He continued: ‘‘The people that we’ve met so far [at USC] are just plain impressive. You come away from having these conversations and you go home and you think, ‘I want to work there.’ To me, that’s an important part of making a life-changing decision like this: You have to have a feeling that working with these colleagues is going to enhance what you do, and that you have an opportunity to contribute to the university as we grow.’’

Moving LONI to USC will be a logistical feat involving a supercomputer, wet lab, a production-quality studio and more than four petabytes of data. ‘‘The new USC Institute for Neuroinformatics will continue to serve as a hub for massive multisite data projects such as the ENIGMA Project, led by Thompson, a research collaboration among 125 institutions worldwide and the largest brain-imaging study ever conducted.

‘‘We’ve worked with many USC faculty for years, so it does feel like we’re just meeting old friends and making new ones at the same time,’’ said Thompson, who cites the Zilkha Neurogenetic Institute at the Keck School and the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, among many others, as areas for collaboration across the university. ‘‘There’s a whole new landscape of discovery in this field. Early brain imaging studies sought to find out what parts of the brain were damaged with certain diseases. What is now coming to the forefront of neuroscience and neuroimaging is examining how different parts of the brain speak to each other, what the principles of communication and how do these systems change with disease. If you look at work on autism, or even to some degree schizophrenia, or Alzheimer’s disease, we’re beginning to see a picture where diseases distort the patterns of communication in the brain. These new technologies are opening a window on these disorders.

All of these things, Toga and Thompson have published well over 1,000 articles, including revolutionary computational and mathematical strategies for mapping how diseases spread in the living brain. ‘‘We are both cases-in-point of the value of working at the interface between disciplines,’’ Toga said.

Aggregating data not only across modalities, across subjects and across institutions—but even across diseases—may afford us the opportunity to recognize patterns that haven’t been discovered before. We’re integrativists, very much research-driven, and we’re a whole that is greater than the sum of its parts.’’

The Weekly NEWSMAKERS

On May 6, Media Bistro reported that David Agus, professor of medicine at the Keck School of Medicine, has been named a contributor to CBS News.

A May 4 article in the Imperial Valley News quoted research led by Michael Courisneau, associate professor of preventive medicine at the Keck School of Medicine, which developed a model that may help address some issues and teen sport injuries. ‘‘Most stress injuries occur in runners, jumpers, and dancers,’’ said Courisneau. “But they can be seen in those who play other sports. The risk is highest in two periods during a young athlete’s career—just as they delve enthusiastically into their sport and when they reach an elite level, during which time physical efforts grow even more demanding.”

On May 7, The Wall Street Journal reported that Pat Levitt, provost of neuroscience, psychiatry, psychology and pharmacy at the Keck School of Medicine and USC School of Pharmacy, will serve as inaugural director of the Developmental Neurogenetics program of the newly created institute for the Developing Mind at The Saban Research Institute of Children’s Hospital Los Angeles.

NORRIS: Building to include multidisciplinary clinics that aid interaction among teams

Continued from Page 1

husband was very proud of his involvement,’’ she said. ‘‘The research held a special place to the Foundation trustees to the work being done at USC Norris. ‘It is our privilege and our responsibility to continue our support of the Keck School and co-founder Nordt. ‘There’s a buzz and excitement at USC that is attractive to anybody that likes to build programs, which we do.’”

Hansen cited the most recent gift of $15 million as evidence of the continued commitment of Norris Foundation trustees to the work being done at USC Norris. ‘‘It is our privilege to be a part of this latest project,’’ she said. ‘‘As funders, we know this is a sound investment; as people who have been touched by cancer, we know the funds are in good hands.”

The gift will be augmented by an additional philanthropic support of $40 million that will be raised as part of the $1.5 billion Keck Medicine Initiative of the Campaign for USC.

The celebration continued at a luncheon, with a program introduced by Keck School of Medicine of USC Dean Carmen A. Puliafito, who thanked the members of the Norris Foundation and introduced USC Norris Comprehensive Cancer Center Director Stephen B. Hansen. ‘‘He understands the mission of cancer care resident training. Health Canal also quoted research led by Thompson, a research collaboration among 125 institutions worldwide and the largest brain-imaging study ever conducted.

‘‘We’ve worked with many USC faculty for years, so it does feel like we’re just meeting old friends and making new ones at the same time,’’ said Thompson, who cites the Zilkha Neurogenetic Institute at the Keck School and the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, among many others, as areas for collaboration across the university. ‘‘There’s a whole new landscape of discovery in this field. Early brain imaging studies sought to find out what parts of the brain were damaged with certain diseases. What is now coming to the forefront of neuroscience and neuroimaging is examining how different parts of the brain speak to each other, what the principles of communication and how do these systems change with disease. If you look at work on autism, or even to some degree schizophrenia, or Alzheimer’s disease, we’re beginning to see a picture where diseases distort the patterns of communication in the brain. These new technologies are opening a window on these disorders.

All of these things, Toga and Thompson have published well over 1,000 articles, including revolutionary computational and mathematical strategies for mapping how diseases spread in the living brain. ‘‘We are both cases-in-point of the value of working at the interface between disciplines,’’ Toga said.

Aggregating data not only across modalities, across subjects and across institutions—but even across diseases—may afford us the opportunity to recognize patterns that haven’t been discovered before. We’re integrativists, very much research-driven, and we’re a whole that is greater than the sum of its parts.’’

The Weekly NEWSMAKERS

On May 6, Media Bistro reported that David Agus, professor of medicine at the Keck School of Medicine, has been named a contributor to CBS News.

A May 4 article in the Imperial Valley News quoted research led by Michael Courisneau, associate professor of preventive medicine at the Keck School of Medicine, which developed a model that may help address some issues and teen sport injuries. ‘‘Most stress injuries occur in runners, jumpers, and dancers,’’ said Courisneau. “But they can be seen in those who play other sports. The risk is highest in two periods during a young athlete’s career—just as they delve enthusiastically into their sport and when they reach an elite level, during which time physical efforts grow even more demanding.”

On May 7, The Wall Street Journal reported that Pat Levitt, provost of neuroscience, psychiatry, psychology and pharmacy at the Keck School of Medicine and USC School of Pharmacy, will serve as inaugural director of the Developmental Neurogenetics program of the newly created institute for the Developing Mind at The Saban Research Institute of Children’s Hospital Los Angeles.
Calendar of Events

Tuesday, May 14

2 p.m. – 3:30 p.m. USC Breast Cancer Center Forum: “Get Fit After the Fight: What You Need To Know About Exercise After Breast Cancer,” Christina Duclo-Goerdt and Daphne Tripathy. USC. NRT Jennifer David Cancer Research Resource Library. Info: (323) 442-7808

4 p.m. Women’s Cancers Program Research Seminar: “Discovery of an Orally Active Small-molecule Irreversible Inhibitor of Protein Disulfide Isomerase for Ovarian Cancer Treatment,” Nouri Neumati, USC. SBH 7409. Info: (323) 865-3520

Wednesday, May 15
8:30 a.m. “High Resolution DOSI Scan,” Allison Wyers, USC. RID 732-734. Info: (323) 226-7923

11:30 a.m. – 2 p.m. “Healthcare in the Age of Disruptive Innovation: How Much Information Do We Need?” Various speakers. GCC 101. Info: (213) 821-6063

4 p.m. Keck School of Medicine M.S. Ph.D., M.P.H. Commencement Ceremonies. Harry & Celesta M. P.H. Commencement Ceremony. Keynote speaker: Elahe Goldberg, dean of the School of Pharmacy. NRT Aresty Auditorium. Info: (323) 442-5550

10:45 a.m. Physician Assistant Program Commencement Ceremony. The lawn west of Lushey Library at the University Park campus. Keynote speaker: Captain Mary I. Greenwood (Ret.). U.S. Navy. A reception will immediately follow at the Davidson Conference Center, Embassy Room. No tickets required. Info: (323) 442-2851

10:45 a.m. Biotechnology and Physical Therapy Commencement Ceremony. Bovard Auditorium at the University Park campus. Keynote speaker: Stephan Ball, physical therapist, senior writer and injury analyst for ESPN. No tickets required. Info: (323) 442-4523

11:30 a.m. School of Dentistry Commencement Ceremony. McKee Soccer Field at the University Park campus. Keynote speaker: Jerold Goldberg, dean of the School of Dental Medicine at Case Western Reserve University. A reception will follow at 1:30 p.m. at the same location. No tickets required. Info: (323) 213-2851

11 a.m. Health Promotion Commencement Ceremony: Town and gown at the University Park campus. Keynote speaker: Elane Nazami, director of the Health Promotion and Global Health Programs at the USC Institute for Health Promotion and Disease Prevention Research. A reception will begin at 11:30 a.m. at the same location. Tickets required for the ceremony; but not for the reception. More Info: (323) 821-6061

Thursday, May 16

Friday, May 17
6:30 a.m. Anesthesiology

Notice: Deadline for calendar submission is 4 p.m. Monday to be considered for that week’s issue—although three weeks’ advance notice of events is recommended. Please note that timely submission does not guarantee an item will be printed. Send calendar items to The Weekly, KAM 400 or fax to (323) 442-3872, or email to ebianue@usc.edu. Entries must include day, date, time, title of talk, first and last name of speaker, affiliation of speaker, title of talk, first and last name of speaker, affiliation of speaker, handle 1,400 simultaneous calls. It also has a backup system on the East Coast. In case of an emergency...

Call the Emergency Information Phone: (312) 145-3453 The emergency telephone system can handle 1,400 simultaneous calls. It also has a backup system on the East Coast. Visit the USC Web: http://emergency.usc.edu This page will be activated in case of an emergency. Backup Web servers on the East Coast will function if the USC servers are incapacitated.

Clinical trial examines natural alternatives to estrogen

By Molly Rugg

Physicians and neuroscientists at USC are enrolling female volunteers into a National Institutes of Health-funded clinical trial studying the effects of soy supplements on menopause-related hot flashes and memory loss. Sponsored by the Keck School of Medicine of USC and USC School of Pharmacy, the clinical trial will examine how healthy perimenopausal women tolerate a nutritional supplement called phytoSERMs.

PhytoSERMs are a food supplement that contain three different phytoestrogens—daidzein, genistein and equol. Phytoestrogens are naturally occurring compounds derived from plants and function like the primary female sex hormone—estrogen.

Lois S. Schneider, director of the USC Alzheimer’s Disease Research and Clinical Center at the Keck School of Medicine, is principal investigator of the clinical trial, which seeks to determine whether PhytoSERMs are a potential treatment for hot flashes and whether they may improve or improve age-related memory loss.

“Extensive pre-clinical research by Roberta Beighton, who holds appointments at USC School of Pharmacy and the Keck School of Medicine, shows that PhytoSERMs’ formulation targets an estrogen receptor sub-type that improves mitochondrial metabolism and memory function in animals,” Schneider said.

Hot flashes, or momentary sensations of heat that may be accompanied by flushing or sweating, are a common symptom experienced by women prior to and during the early phases of menopause. Some women may also experience a rapid heart rate or chills. Hormone changes during aging process and declining levels of estrogen contribute to the symptoms.

The clinical trial is looking for 78 healthy women for a 16-week randomized, double-blind, placebo-controlled study. That means half of the women in the study will receive the phytoSERM supplement, while the other half will receive a placebo, but neither the participant nor the researcher will know who receives which until after the study’s conclusion. To be eligible, women should be between 46-58 years of age and have experienced age-related memory loss and hot flashes. They should not be utilizing hormone replacement therapy. Selected volunteers will not receive any compensation for participation in the clinical trial.

The study is being conducted at the Memory and Aging Center of the Keck School. For information or to volunteer, contact Nadine Diaz, at (323) 442-5775 or ndiaz@usc.edu.

CUTTING-EDGE SURGERY—The USC Institute of Urology hosted “L.A. Live—International Robotic and Open Live Surgery Symposium,” which attracted more than 400 international surgeons served as speakers and moderators for the event, which featured live robotic-assisted and open surgeries. The event was designed to help improve robotic skills for all levels of surgeons. “The L.A. Live Robotics Symposium brought together leading urologists from all over the world to USC,” noted Inderbir Gill, founding director of the USC Institute of Urology and chairman and professor of the Department of Urology at the Keck School of Medicine of USC. “Innovations pioneered at the USC Institute of Urology and around the world were presented—cutting-edge robotic and open techniques for kidney, prostate and bladder cancer. The goal of this event was to together chart a course for the future.”

In case of an emergency...