USC researchers unlock stem cell communication secrets

By Pauline Vu

In one of the first studies to look at the population behavior of a large pool of stem cells in thousands of hair follicles, Keck School of Medicine scientists deciphered how hair stem cells in mice and rabbits can communicate with each other and encourage mutually coordinated regeneration.

The team, whose work appears in the April 29 edition of the journal *Science*, collaborated with mathematical biologists from the University of Oxford on the article, “Self-Organizing and Stochastic Behaviors During the Regeneration of Hair Stem Cells,” which was just named an Editor’s Choice in *Science Signaling*, a sister publication of *Science*.

The researchers analyzed over many months the changes in the hair growth patterns on shaved mice and rabbits, which indicate cyclic progression between active and quiescent states by stem cells in hair follicles.

“The results are totally surprising. There is complex coordination not apparent to the naked eye,” said Cheng-Ming Chuong, professor of pathology at the Keck School and the principal investigator of the study funded by the National Institutes of Health. The “complex coordination” Chuong refers to is the ability of the large hair stem cell population to communicate with each other to reach robust hair growth, manifesting in a constantly shifting hair wave pattern that often looked like a piece of abstract artwork “painted” on the rabbit’s skin.

The scientists found that hair stem cells coordinate their regeneration with the aid of a pair of molecular activators Wnt and inhibitor BMP. When Wnt and BMP signals are used repetitively among a population of thousands of hair follicles across the entire skin surface, complex regenerative hair growth behavior emerges via the process of self-organization. The research holds potential for finding a cure for alopecia, or hair loss, by improving their environment for communication. Alopecia occurs in humans partially because stem cells in human hair follicles unlike those in mice and rabbits, have lost the ability to communicate with each other.

“While each human hair follicle wants to regenerate, it can only count on itself; it’s not getting help from other cells in the population,” said Peter Conti, professor of pathology, biomedical engineering and pharmacy.

“This has broad-based implications for the university,” he said. “The School of Pharmacy, the Chemistry and Biology departments at the USC Dornsife College, and the USC Viterbi School of Engineering are just some of the units that will see this as a core resource. Novel uses of this technology are being defined every day by teams of researchers in a spectrum of fields from stem cell biology to material sciences.”

A cyclotron is used to create short-lived isotopes used for basic research and development of new diagnostic imaging tests in humans and animals, Conti said. They are produced on an as-needed basis for same day experimentation. Recently, purchasing these isotopes from local outside companies was necessary to maintain clinical and research activities due to the poor reliability of the aged instrumentation at USC, adding costs and delays and affecting the university’s ability to obtain research grants, he said.

“This reinvestigates our research program,” he said. “It also gives us the ability to do more clinical trials and attract more patients. Many patients on clinical trials require access to novel diagnostic agents not available from commercial manufacturers, but now we will be able to create materials on site so that they can be used in such studies.”

The new cyclotron’s technological advances will yield reductions in energy consumption and overall operating costs, which could result in eventual cost savings for patients, according to Conti. He also said the new technology is self-contained, minimizing radioactive exposure to workers and the community.

As plans are made for facility upgrades to house the new cyclotron, including incorporation of a GMP (Good Manufacturing Procedures) production facility, Conti’s institutional knowledge will come in handy. When he was hired at USC 20 years ago, the university had just installed its first cyclotron.

“When we installed that first unit here, I remember sitting in on many planning sessions,” he said. “We’ll work closely with university facilities, vendors and contractors in the next six months, and address quality control issues and staff training. I hope to have the cyclotron up and running by the end of the year.”

By Leslie Ridgeway

Diagnostic imaging at the Keck School of Medicine’s Department of Radiology just took a giant step forward with the award of a $3 million National Institutes of Health (NIH) grant to purchase a new cyclotron for USC’s Molecular Imaging Center.

While the grant means increased capacity for imaging diagnosis and development of new technological advances will be possible, the cost of the cyclotron, which is self-contained, minimizes its operating costs, said Peter Conti, professor of pathology, biomedical engineering and pharmacy.

He also said the new technology is self-contained, minimizing radioactive exposure to workers and the community.

“With the grant, we will be able to create new compounds on-site so that they can be used in such studies,” he said.

The new cyclotron’s technological advances will yield reductions in energy consumption and overall operating costs, which could result in eventual cost savings for patients, according to Conti. He also said the new technology is self-contained, minimizing radioactive exposure to workers and the community.

As plans are made for facility upgrades to house the new cyclotron, including incorporation of a GMP (Good Manufacturing Procedures) production facility, Conti’s institutional knowledge will come in handy. When he was hired at USC 20 years ago, the university had just installed its first cyclotron.

“When we installed that first unit here, I remember sitting in on many planning sessions,” he said. “We’ll work closely with university facilities, vendors and contractors in the next six months, and address quality control issues and staff training. I hope to have the cyclotron up and running by the end of the year.”

The results are totally surprising. There is complex coordination not apparent to the naked eye.

—Cheng-Ming Chuong, professor of pathology at the Keck School

$3 million NIH grant paves way for expanded radiology services

USC CELEBRATES NATIONAL HOSPITAL WEEK

Nurses Marie Aasoncon-Maita (left) and Valencia Webb-Streeter grab boxed In-N-Out Burger lunches on May 9 as part of National Hospital Week festivities at USC University Hospital and USC Norris Cancer Hospital. Hospital administrators hosted events to recognize employees and physicians all week long, including an ice cream social, raffles for Los Angeles Dodgers tickets, a guest speaker and a special gift giveaway. National Hospital Week is the nation’s largest health care event and is celebrated all across America.
By Pauline Vu

The night before the inaugural Vladimir Zelman Distinguished and Endowed Lectureship on April 28, friends and colleagues gathered at the Jonathan Club in downtown Los Angeles to honor Zelman, a clinical professor of anesthesiology at the Keck School of Medicine of USC. Having grown up in Russia, Zelman was lauded for his work “building bridges.”

“Since he came to the United States, Vladimir has been the consummate ambassador between two initially disparate cultures and civilizations,” said Philip Lumb, chair of the Department of Anesthesiology. “And Vladimir continues to create that bridge, to make that alliance, to make that partnership, to make that sensation of oneness more and more effective.”

Real estate developer and philanthropist Guilford Glazer, who along with his wife Diane donated $100,000 to establish the annual lectureship, likewise praised Zelman for his ability to bring people together.

“Good doctors, like Vladimir, have a dual role if they want to accept it. In foreign relations, we’re at war with a big part of the world, and the only people who have the right competency to talk to the other side are the doctors,” said Glazer, who has known Zelman for more than 30 years.

He went on to say that Zelman has brought many Russians to USC for health care, drawing people who otherwise would not come to the United States.

Doctors “can be our best emissaries to our neighbors,” Glazer said. “And Vladimir is one of those fellows. He’s a diplomat.”

Zelman earned his first doctorate in medicine in 1958 at the Novosibirsk Medical Institute in the then-UNSR. He earned numerous honors in the USSR and moved to the United States in the mid-1980s. Zelman often returns to Russia. Just a few days before the dinner, he was in Moscow meeting with Russian President Dmitry Medvedev and Medvedev’s wife Svetlana, a good friend. Thanks to that relationship, there will soon be a USC-affiliated women’s health program in Russia.

“Bridges, understanding and cooperation is probably one of the important things of today’s international relationships,” Zelman said. “This will make the world safer.”

The people who came to the dinner reflected Zelman’s international prominence. In attendance was Los Angeles County Sheriff Lee Baca, who has worked with Zelman to reach out to the Russian community in Los Angeles, and Roald Sagdeev, the former director of the USSR’s Space Research Institute, who was crucial in promoting perestroika, the 1980s political movement that helped lead to the end of the Cold War.

Zelman said the Glazers told him they wanted to donate money to USC in his honor and asked him how he wanted to use the gift. He decided a lectureship featuring a world-renowned expert in the neuroscience of pain would be the best benefit to students, residents and doctors on the Health Sciences Campus.

The inaugural speaker, James Cottrell, spoke in Anesdy Auditorium about fragile and aging brains. Cottrell, the Distinguished Professor and Chairman of the department of anesthesiology at SUNY Downstate Medical Center, is a former president of the American Society of Anesthesiology. In 2008, he was awarded the society’s prestigious Distinguished Service Award.

“Dr. Zelman is so well thought of and he’s projects that address the development of our specialty that I was just delighted and honored to be asked to speak,” Cottrell said.

The 30th annual USC Academic Honors Convocation was held on April 6 at Town & Gown, with two members of the Health Sciences Campus receiving honors.

Qiaojia Jennifer Sun, a Keck School of Medicine doctoral student, received a Phi Kappa Phi Faculty Recognition Award. The award honors faculty “for recent scholarly, scientific or creative works that can make a contribution of the highest order to their respective disciplines.”

The Albert Schweitzer Fellowship has selected two Keck School students—Crystal Ives and Katrina Renduchintala—as 2011-2012 fellows. As fellows, they will create and carry out service projects that address the unmet health needs of underserved individuals and communities.

Ives plans to address the lack of opportunity for controlled detoxification from opiates for low-income individuals in downtown Los Angeles by starting a short-term outpatient buprenorphine detoxification program at an established needle exchange site.

Renduchintala will tackle the need for access to health and wellness education among local underserved minority middle-school and high-school students by creating interactive small-group health workshops that focus on various teen health issues.
Keck School touts benefits of stem cell research at Beverly Hills event

By Imelda Valenzuela

Forty people attended a reception honoring Keck School of Medicine Dean Carmen A. Puliafito for his reappointment to the California Institute for Regenerative Medicine (CIRM) board.

Held on April 27 at the Peninsula Beverly Hills Hotel, the event, “Transfoming Medicine with Stem Cell Research,” was hosted by Keck School alumnus Jeffrey Ross Gunter, a dermatologist and chair of the advisory board for the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC.

“I truly believe that stem cell research will play a huge role in health care and it will take people with vision and stamina to bring that to a reality,” he added, referring to Puliafito and Martin Pera, director of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC.

“I came to USC three and a half years ago and one of the reasons I came was that California is the stem cell capital of the world,” said Puliafito, a practicing ophthalmologist whose patient was featured in a video shown at the event. “I am aware of the tremendous challenges that patients face every day. As a physician, there is nothing more compelling than dealing with the patient and the patient asking, ‘What can you do to solve my problem?’”

USC is one of a few institutions in the world that have been funded by CIRM to develop a stem cell cure for macular degeneration, according to Puliafito, who explained that clinical trials would be underway soon. He also emphasized that implications from the studies would impact other areas including heart disease, Parkinson’s disease, Alzheimer’s diseases, diabetes and spinal cord injuries—categories in which he said “we can even take cells from animal tissues, we can endow them with the properties of embryonic stem cells, which means we can take adult cells and turn them into cells that can make all the tissues of the body. It’s a very, very exciting time to be working in this field.”

“I believe that stem cells will play a huge role in health care and it will take people with vision and stamina to bring that to a reality.’”

— Jeffrey Ross Gunter, chair of the advisory board for the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC

NIH awards $1 million to Occupational Therapy, Physical Therapy

The USC Division of Occupational Science and Occupational Therapy will join with the Division of Biokinesiology and Physical Therapy for a five-year program to train nine postdoctoral scientists in clinical trials research.

Funded by a $1 million regenerative medicine grant from the California Institute for Regenerative Medicine at USC, the program will focus on treating patients with metastasis of cancer that has failed standard therapy. The two main goals of the trials are to identify the safe dose of the drug as well as identify the dose that achieves the best modulation of the West pathway. Once the safe dose is identified, the trials will focus on treating patients with metastatic pancreatic and colon cancers to determine the drug’s effect on their tumors.

The goal of the program is to improve participants’ ability to independently conduct randomized clinical trials, including comparative effectiveness studies, and an increase in both the quantity and rigor of rehabilitation science publications. In the long term, the program aims to promote the development and testing of interventions that improve the effectiveness of rehabilitation services.

The Weekly NEWSMAKERS

On Apr. 28 Bloomberg Businessweek ran a HealthDay News story which reported a study led by Jessica Rayhanabad, a fellow in the breast surgery division at the Keck School of Medicine, which found that breast biopsies affect breast cancer diagnosis but not prognosis. The story also ran in U.S. News & World report, LmadaHealth, Doctors Lounge and The Stir.

A May 2 article in The New York Times highlighted a study by Pat Levitt, director of the Zilkha Neurogeneic Institute, and colleagues, finding that the placenta plays a key role in fetal brain development in the early stages of pregnancy. The placenta synthesizes serotonin and ships it right to the forebrain, the story stated. “It makes sense that those circuits involved with mood, emotions and confronting challenges in the environment were themselves shaped by the environment early on,” Levitt said.

A May 2 story on KTLA5 News quoted Visi Piyuchkeewanont, pediatric endocrinologist at Children’s Hospital Los Angeles, about prematurity puberty in girls all over the world.

On May 3 Fox News Los Angeles affiliate KTTV-TV reported that students at the Keck School of Medicine are using a massive photo database app called Visual DX that works on an iPad that aids doctors in the diagnosis of illnesses.

On May 5 HLN network’s “Dr. Drew” show welcomed Douglas Prisco, assistant professor of clinical medicine at the Keck School of Medicine, as he discussed sleep disorders and treatment.
Ph.D. student wins international dental research award

By Beth Dunham

Herman Ostrow School of Dentistry Ph.D. candidate Marcelo Freire has been awarded the International Association of Dental Research’s 2011 Bernard G. Samat Award in Craniofacial Biology, an honor given to the predoctoral or postdoctoral student who conducts original and outstanding research in craniofacial growth and development.

Among hundreds of applications submitted from around the world, only 10 abstracts were chosen as poster session finalists. From the finalists, Freire’s abstract was selected as the winner.

“When I heard my name, it was a big surprise,” said Freire, who was named a postdoctoral student before enrolling in the school’s Ph.D. in Craniofacial Biology program. “I was really proud to represent our school. I hope it inspires students to participate in research and go beyond what is thought of dentistry.”

His winning project, “Bioengineering Bone with Monoclonal Antibodies,” examined the possibility of developing new bone growth by modulating the extracellular environment using therapeutic antibodies. To test the possibility, monoclonal antibodies—antibodies cloned from the same parent cell—were designed and immobilized on collagen scaffolds to tether growth factors, including BMP-2, or bone morphogenetic protein 2. These membranes surgically were placed in critical-size rat calvarial models designed to mimic bone defects found in humans.

After several weeks, CT scans and tissue analysis revealed increased bone formation in sites with antibodies when compared to controls.

“Such novel methodology is an advance in science and technology, and we hope one day this will translate to treat patients with skeletal defects or injuries, including congenital defects involving the jaw, palate and face,” Freire said.